B. MATH (HONS.) IST YEAR FINAL EXAM ELEMENTARY NUMBER THEORY 9TH DECEMBER, 2022 TOTAL MARKS - 50

Instruction to students. Please present your solutions as clearly as possible. Any theorem/result that you use directly should be clearly stated/mentioned.

- (1) (i) If p is an odd prime, then show that $(p-1)! \equiv \left(1.2...\left(\frac{p-1}{2}\right)\right)^2 (-1)^{(p-1)/2} \pmod{p}$. Hence deduce that the congruence equation $x^2 \equiv -1 \pmod{p}$ (where p is any prime) has a solution if and only if p = 2 or $p \equiv 1 \pmod{4}$. *Hint*: Use Wilson's theorem and Fermat's little theorem. (2+3) (ii) Let $n \ge 2$ be an integer and $k = 2^n + 1$. Show that if $3^{(k-1)/2} + 1 \equiv 0 \pmod{k}$, then k is a prime. (3) (iii) Prove that the only positive integers dividing both $n^2 + 1$ and $(n+1)^2 + 1$ for some integer n are 1 and 5. *Hint*: Show that any such positive integer must necessarily divide both 4n + 7 and 2n + 1. (3)
- (2) (i) Prove that the Legendre symbol $\left(\frac{561}{659}\right) = 1.$ (4)

(ii) Prove that if n is an odd positive integer, then every prime divisor of $2^n - 1$ is of the form $8k \pm 1$. (iii) Show that if $p = 2^n + 1$ is a prime for some $n \ge 2$, then $3^{(p-1)/2} + 1$ is divisible by p. *Hint*: Use Euler's criterion and law of quadratic reciprocity. (4)

(iv) Show that a prime p > 3 satisfies the congruence $x^2 \equiv -3 \pmod{p}$ if and only if $p \equiv 1 \pmod{6}$. *Hint*: Use law of quadratic reciprocity. (4)

- (3) (i) If m, n are positive integers such that gcd(m, n) = 1, then show that the set of positive divisors of mn consists of all products d₁d₂, where d₁ divides m, d₂ divides n and gcd (d₁, d₂) = 1. (2)
 (ii) Define a multiplicative function. If F is multiplicative and F(n) = Σ_{d|n} f(d), then show that f is also multiplicative. (1+3)
 (iii) Let τ(n) = Σ_{d|n} 1, the number of divisors of n. Show that τ is a multiplicative function and hence deduce that τ(n) is odd if and only if n is a perfect square. (1+2)
- (4) (i) Find all positive integral solutions of 9x + 7y = 200. (3) (ii) Define $f_0 = 0$, $f_1 = 1$ and $f_n = f_{n-1} + f_{n-2} \forall n \ge 2$. Determine the characteristic polynomial of this linear recurrence relation and hence show that $f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n \forall n \in \mathbb{N}.$ (1+3)
- (5) (i) For $a, b, c, d \in \mathbb{N}$, show that $(a^2 + b^2)(c^2 + d^2)$ can be written as a sum of two squares. Hence express 54145 as a sum of two squares. (1+3)
 - (ii) Show that a positive integer n can be expressed as the difference of two squares

if and only if n is not of the form 4k + 2. *Hint*: If n is not of the form 4k + 2, then consider the two cases $n \equiv 1$ or $3 \pmod{4}$ and $n \equiv 0 \pmod{4}$ separately. (4)